A Facile Synthsis of ω-Bromo-Diene *Via* Solid/Liquid Transferred Wittig Reactions of ω-Bromobutyltriphenyl phosphonium Salts With α.β-Unsaturated Aldehydes

De Qing SHI, Ru Yu CHEN*

Research Institute of Elemento Organic Chemistry, NanKai University, Tianjin 300071

Abstract: A new approach to the synthesis of ω -bromo-dienes was carried out by using solid/liquid transferred Wittig reactions between ω -bromobutyltriphenylphosphonium salt and α . β -unsaturated aldehydes.

Keywords: Wittig reactions, ω -bromoalkyltriphenylphosphonium salts, synthesis, ω -bromo-dienes, stereoselectivity.

The simplified Wittg reaction under the solid/liquid conditions has been applied in organic synthesis as a useful method 1 . The implementation of this reaction can give high yields in some cases whereas in an anhydrous homogeneous medium leads to a poor yield 2 . There are few reports on the direct Wittig reaction of ω -bromoalkyltriphenylphosphonium salts with aldehydes 3 . An early study on the reaction using RONa as a base resulted a complex mixture of alkenes 4 , because of the partial elimination of HBr or the cyclization reaction. The method of a direct preparation of ω -unsaturated bromide \emph{via} solid/liquid Wittig reactions of ω -bromoalkyltriphenylphosphonium salts with aldehydes has been reported previously 5 . In this paper, we report the method of the Wittig reaction of ω -bromoalkyltriphenyl phosphonium salts with a β -unsaturated aldehydes to synthesize ω -bromo-dienes, which are important intermediates of some pharmaceutical compounds 6,7 and insect sex hormones 8 . Our approach affords a one-pot reaction with mild conditions, good regioselectivity and high yields of ω -bromo-dienes.

Experimental

 $^{l}HNMR$ spectra were recorded with a BRUKER AC-P200 spetrometer . Mass spectra were recorded with a VG ZAB-HS spectrometer using the EI method. IR spectra were measured by a SHIMADZU-435 instrument. GC were recorded with a HEWLETT PACKARD G1800A GCD (Gas Chromatograph Electron Ionization Detector) system. Melting Points were determined with a Thomas-Hoover melting point apparatus and the thermometer was uncorrected. ω -

bromobutyltriphenylphosphonium salt 1 was prepared from Ph_3P and 1,4-dibromobutane in refluxing tulune in 96% yield⁹. α . β -unsaturated aldehydes 2 were purchased or prepared in the reported methods.

Ph₃P⁺(CH₂)₄BrBr⁻ + E CHO
$$\frac{K_2CO_3(s)/THF}{\text{or NaOH(s)/CH}_2Cl_2}$$

1 2(a-d)

E CH = CH(CH₂)₃Br + Ph₃PO

R

3 (E or Z)

R-Phenyl, O- NO₂Phenyl, furyl, methyl

Table 1 The structures and reaction conditions of compounds 3

Compd.	R	Solvent/Base	State	Yield(%)	E,Z-isomer(%)*
3a	ph	THF/K ₂ CO ₃ (s)	light-yellow liq.	86	60.2
3a`	ph	CH ₂ Cl ₂ /NaOH(s)	light-yellow liq.	83	27.5
3b	o-NO ₂ ph	$THF/K_2CO_3(s)$	yellow liq.	81	86.8
3b'	o-NO₂ph	CH ₂ Cl ₂ /NaOH(s)	yellow liq.	89	66.1
3c	2-furyl	$THF/K_2CO_3(s)$	red-brown liq.	78	79.4
3c'	2-furyl	CH ₂ Cl ₂ /NaOH(s)	red-brown liq.	85	36.7
3d	CH ₃	$THF/K_2CO_3(s)$	colorless liq.	63	79.5
3d'	CH ₃	CH ₂ Cl ₂ /NaOH(s)	colorless liq.	58	77.9

*The contents of E,Z and E,E-isomers of the products were determinated by GC and HNMR

General procedure for the synthesis of 3

A mixture of phosphonium salt 1 (24mmol), α . β -unsaturated aldehydes 2 (20mmol), sodium hydroxide powder (50mmol) and dichloromethane 45 ml or anhydrous potassium carbonate (80mmol) and Tetrahydrofuran 50 ml was stirred under reflux for 12-24 h (monitered by TLC), filtered and purified by column chromatography on silica gel using petroleum ether and ethyl ether as the eluent.

¹HNMR, IR and MS for selected compounds 3

3a: 1 HNMR(CDCl₃, 200MHz) $^{\delta}$ 1.95-2.02 (m,2H), 2.31-2.47 (m,2H), 3.41-3.47 (t,2H), 5.39-5.52 (q,1H,J=7.3, 18.76Hz), 6.16-6.28 (t, 1H,J=10.44,11.46Hz), 6.50-6.58 (d,1H, J=15.64Hz), 7.02-7.15 (m,1H), 7.24-7.40 (m,5H); MS, m/z 250,252 (M $^{+}$,1:1), 171 (M-Br), 143, 129 (100 %), 115, 91,77; IR(cm $^{-1}$)3137(m), 3012, 1592, 1488, 1458, 980(s), 727(s), 688(s), 562(m) 3b: 1 HNMR(CDCl₃, 200MHz) $^{\delta}$ 1.95-2.02 (m,2H), 2.02-2.48

(m,2H), 3.41-3.47 (t,2H), 5.51-5.64 (q,1H), 6.23-6.33 (t,1H), 7.03-7.10 (m, 2H), 7.36-7.90 (m, 4H); MS, m/z 295, 297 (M⁺,1:1), 216 (M-Br), 174, 146, 119 (100%), 92; IR (cm⁻¹) 3049 (m), 2919, 1630 (m), 1603 (m), 1516 (s), 1341(s), 980,728, 560

3c: ¹HNMR(CDCl₃, 200MHz) δ 1.94-2.00 (m, 2H), 2.25-2.44 (m,2H), 3.39-3.46 (t,2H), 5.37-5.50 (q,1H), 6.14-6.38 (m, 4H), 6.88-7.01 (q,1H), 7.35 (s,1H); MS, m/z 240, 242 (M⁺,1:1), 161 (M-Br), 133 (100%), 119, 105

3d: ¹HNMR (CDCl₃, 200MHz) δ 1.75-1.78 (d, 3H, J=6.8Hz), 1.90-1.96 (m, 2H), 2.01-2.32 (m, 2H), 3.37-3.43 (t, 2H), 5.14-5.27 (q,1H), 5.63-5.74 (m,1H), 5.93-6.04 (t,1H), 6.26-6.39 (t,1H); MS, m/z 188,190 (M⁺, 1:1), 109 (M-Br), 95, 81 (100%), 67

Results and Discussions

It was shown that the reaction of 1 and 2 led to very poor yields when anhydrous potassium carbonate was used as a base and CH_2Cl_2 as a solvent even after refluxing for 20 h; However, when NaOH/THF system was applied, elimination of HBr occurred; But when K_2CO_3/THF or NaOH/ CH_2Cl_2 were used, the reaction took place smoothly and ω -bromodienes were obtained in high yields and no other by-products were found by GC-MS detection. The reaction of 3-bromopropyltriphenyl phosphonium salt with α . β -unsaturated aldehydes even in the presence of K_2CO_3 gave no ω -bromo-dienes but only more stable trienes (RCH = CHCH = CHCH=CH₂). The results of the stereoselectivity of the reaction are listed in Table 1. When THF was used as the solvent, the reaction showed Z-selectivity, however, when CH_2Cl_2 was used, the stereoselectivity of the reaction is irregular. The polarity of the solvent might play an important role in the stereoselectivity of the reaction.

Acknowledgment

The project is supported by the National Natural Science Foundation of China

References

- 1. T. B.Attra, Y. L. Bigot, R. E. Gharbi, M. Delmas, A. Gaset, Synth. Commun., 1992, 22, 1421.
- F. C. Rouhou, Y. L. Bigot, R. E. Gharbi, M. Delmas, A. Gaset, Synth. Commun., 1986, 16, 167.
- 3. F. Clemence, O. Le Martret, R. Fournes, Ger. Offen, 3025436(1981).
- 4. A. Mondon, Ann., 1957, 603, 115.
- M. W. Ding, D. Q. Shi, W. J. Xiao, W. F. Huang, T. J. Wu, Synth. Commun., 1994, 24(22), 3235-39.
- 6. S. Mutsumara, H. Enomoto, Y. Aoyagi, Y. Yoshikumi, K. Kura, M. Yagi and I.Shirahase, *Belg.* 876020 (1979)
- 7. S. Tamada, K. Ei, S. Teramoto, T. Tanaka and K. Nakagawa, JP 86, 140, 567.

- M. Gardette, N. Jabri, A. Alexakis, J. F. Normant, *Tetrahedron*, 1984, 40, 2741.
 A. Hercouet, M. Le Corre, *Tetrahedron*, 1981, 37, 2861.

Received 14 July 1999